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ABSTRACT

In the present work, we consider the problem of estimating the prior

probabilities qk of a mixture of known density functions fk(X), based

on a sequence of N statistically independent observations.

The mixture density is:
M

g(X IQ) = k qkfk(X)

k=l

It is shown that for very mild restrictions on fk(X), the maximum

likelihood estimate of Q is asymptotically efficient.

However, it is difficult to implement. Hence, a recursive algorithm for
estimating Q is proposed, analyzed, and optimized.

For the M=2 case, it is possible for the recursive algorithm to achieve
the same performance with the Maximum Likelihood one.

For M>2, slightly inferior performance is the price for having a recursive

algorithm. However, the loss is computable and tolerable.
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Introduction :

In many pattern classification problems, the probability density function

of each class is known accurately, while the prior probabilities of the

classes are unknown.

There are instances where the estimation of prior probabilities from

unclassified observations is the ultimate purpose of the data processing.

This situation occurs in machine processing of remotely sensed Earth

Resources data.

The probability density functions of the spectral signatures of the several

crops are known, defined in the multidimensional observation space. The

objective is the accurate estimation of the proportions of the crops in a

given area.

In Section I, the general problem of joint classification of a set of obser-

vations and estimation of prior probabilities is formulated. In a related

work by the author, [ 4 ] the problem of simultaneous optimal classification

and recursive estimation of the prior probabilities has been considered.

Here, the assumption is that we do not care about the individual classifi-

cation of each observation, but we are only interested in a good estimate

of the prior probabilities.

The method proposed in the present work has the advantages of being

recursive in nature, of guaranteed fast convergence of the error variance

at a rate that can be computed, achieving the Rao-Cramer lower bound in

the two class case.

We are imposing only certain mild constraints to the probability density

functions.

I. Likelihood Function

Let XN = (X1 ... XN) be a sequence of statistically independent observations.
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Each observation Xi cE n is distributed according to fk (Xi), under

hypothesis H k , k =1, . . . , M. The probability density functions fk(X),

k= 1,... , M are assumed continuous and positive for every X E"n

Let

1 if X i ~ eH
K!-

0 if X i i Hj

Let
1 2 M

Ki = (K. K.. .. K.

th
Then Ki is an M-vector with M - 1 zeros and a 1 in the j position if

Xi eH . Thus Ki indicates the class membership of Xi .

Let

KN = (K 1 ... KN)T

Then KN is an N x M matrix, with columns K . It indicates the class

memberships of the observations (X 1 . . X N )

Let rr = ( I . M ) T  be the vector of prior probabilities of the M

classes.

We are interested in determining the conditional likelihood function

P (XN, K Nrr)

We have, by the Bayes rule

P (XN , KN KN I (r)x KN, rr) P (KN rr) =

= p (XN KN) p (KN )
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The above conditional probability density functions are:
S

N M Ki

P(X N I K N =I s=I s(Xi)

i=l s= 1

Substituting, we have:

N M K

P(XN, KN ,) =l ss (Xi
i=l 1

In general, both KN and rr may be unknown.

It is interesting to note that the pair (K N , r ) that maximizes

P (XN, K N I 1) has the following intuitively nice properties.

For known rr, the value KN=N that maximizes p(XN, KN rr

reduces to the Bayes classifier, i.e.

j 1 if 1. fj (Xi) = max "m fm (Xi)

0 otherwise

For known KN the value r7= T that maximizes P(XN, KN

is the relative frequency estimate, i. e.

N
A -1  s= N K
s i

i=1
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Hence the estimate

AN A NKN
(K ,rr) = arg max P(X ,  Tr)

is intuitively appealing but complicated to realize.

In the present work, we are not interested in estimating K N. We are

only interested in estimating rr. If K N is known, the relative frequency

estimate is unbiased:

A s
E175 = N EK. =rr

i=1

The error covariance matrix has elements

-1
A A N  s (1- for s=j

S- N (- )i for s/j

Since perfect classification (knowledge of KN ) is an ideal situation for

estimating the priors, the above error covariance matrix is a 'lower

bound" to the achievable error variance in estimating rr under unknown K

II. Mixture Approach--2 class case

If we average the conditional p.df. P ( X N, K N ) over K N the

result is

P(XN TT= P(XN, KN ITT

N
K

M

7r { T rs fs (Xm)
m=l s=1



We are interested in finding the value of rr that will maximize the

conditional likelihood function

P(XN I )

Let
M

g(X T) = X s s (X)

s=l

The function g(X Tr) is linear in the unknown parameters

In the present section, we will concentrate on the M=2 class case.

In this case, the parameter r is one dimensional.

g(X I rr) = r fl(X) + (l-T) f 2 (X)

We make the following assumptions on f 1 f 2 :

Assumption 1:

fl(X) , f2 (X) are continuous and nonzero for all XeEn

Assumption 2:

The mixture g (X I T) is identifiable in the usual sense [5 ].

That is

if g(X T l ) - g(X T12 )  VXCE n

then i = T 2

Comment :

H has been shown that most of the usual probability density
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functions make identifiable mixtures. In [5 ], there is a list of such

p. d. f's.

Because of the convenient form of the function g(X Trr), we are able

to use a theorem due to Cramer [6 ], regarding the behavior of the

maximum likelihood estimate, qN where

A N
q = arg max P(X Tr

N T

In general, the function

N %N
(X ,P ) = log P(X Nr)

has a number of local maxima.

The local maxima 1TK are solutions of the likelihood equation:

log P(XN r) = 0

The original version of the theorem requires the satisfaction of Conditions

1 - 5, due to Cramdr [6 ].

If Conditions 1 - 5 are satisfied, any solution of the likelihood equation

will be a "good" estimate, in a sense to be defined.

For numerical solution of the likelihood equation, it would make things

easier if we knew that the likelihood equation has a unique solution.

Conditions 6 - 7 due to Perlman [ 7 ], guarantee that for large enough N ,

and with probability 1, we will have a unique solution of the likelihood

equation.
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The conditions that must be satisfied, are:

Condition :

For almost all XeEn,

i- log g(X q) , i=1,2,3
-- qi

qe[0, 1i

Condition 2:

E - log g(X q) I =0
where = true value of the rior robabilq=ity.

where Tr = true value of the prior probability.
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Condition 3:

J(T) = e log g(X q) )2 < +

Condition 4:

E log g(X I q) = -Jrr)

q q=TT

Condition 5 :

There exists a function m ( X), such that

3

2 log g(X I q) < m(X), Yqe[O,1]

and m(X) is finite

Condition 6:

The Kullback-Leibler information number

I(q, r) = g(X I ) log g(X I q) dx

En

achieves a unique minimum at q= .T

Condition 7 :

L log g(X I q) is continuous in q for each qe[0, 1],
aq

uniformly in X.

Theorem :

Under the regularity Conditions 1-7, the maximum likelihood

estimate
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A N
P = arg max -i g(Xm q)

N q m=1

is weakly consistent, i.e.

A
lim PN = TT in probability
N-.

Furthermore, the estimate PN is asymptotically efficient, i.e., it

I

achieves the Rao-Cramer lower bound:

E(PN - ) N 1 [2J-~T ]

Also, with probability 1 there exists an No , such that for all N > No

the likelihood equation has a unique solution in the region 're [0, 1 ].



Intuitively speaking, the theorem says that for N 'large enough,"

we will have in [0, 1 ] a unique solution of the likelihood equation.

Hence, if No is known, we can use an efficient numerical method

specifically designed to seek the unique zero of a function.

For the particular problem considered here, we have

J() = fI fl( X ) - f2 (X)] [2 f 1 (X) + (1-n)f 2 (X) 1 dx

En

In Appendix I, it is shown that Assumption 1 implies that J(rr) i s

upper bounded by [ rr(1 -rr) ]- 1.

Hence, for rr40, 1 , J(r ) is finite. The physical significance of this

bound is the following.

The quantity N-1 rr (1- rr) is the variance of the relative frequency

estimate in the case of observations of known classification.

Hence the inequality

-1 -
J() N (1-TT)

is natural. It means that the Rao-Cramer lower bound (left hand

expression) is higher than the variance of the relative frequency estimate.

We have to accept the higher error variance due to the fact that the

obsei'ved data are unclassified.

In Appendix I, it is also shown that the function

A(rr) = [J(tr)]

is concave in the region [0, 1]
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In such a case, we assume that we know that nr lies in an interval

I(e), where

[0,1] if J(0) <+<, J(1) < +

[e, 1 ]  if J(O) = +, J(1) < +

I( [0, 1- ] if J(O) < +, J(1) = +

[e, 1- e] if J(0) = J(1) = + ,

and e is a small positive number. The Conditions 1-7 have to be valid

for r I( e) in order for the theorem to apply.

In Appendix I,an efficient method for computing J(rr) in the case of

Gaussian densities is demonstrated.

In Appendix II, it is shown that Assumptions 1-2 imply the satisfaction of

Conditions 1-7.

Hence, the Maximum Likelihood estimate of Tr is an efficient method in

terms of performance.

The implementation of the estimate requires finding the maximum of the

likelihood function, which is an N t h  degree polynomial. For large N,

we cannot afford the computational complexity of the above scheme.

Furthermore, the M.L. estimate is non-recursive. We cannot update it

efficiently.

We will now consider a recursive estimate of the mixture parameter rr.

The basic observation is that the value q= rr minimizes the Kullback-

Leibler information number I(q, rr), and the minimum is unique.
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The derivative of I(q, T7) is:

Sl(q, r) = -j g(X I ) 1 log g(X I q) dx =

q En L q

= -E log g(X I q) Tr

Hence, the estimate of the gradient of I(q, Tr), for a fixed q and

based on one observation X, is:

_ log g(X 1 q)

Motivated by the above observation, we consider the following sequential

estimation algorithm:

PN+1 = PN + N' L(PN) G(XN+1,PN)

where G is the current estimate of the gradient:

G(XN+1, q) - log g(XN+ 1  q)

= f 1 (XN+1) - f2 (XN+1) I

. q fl(X.N+I) + (1-q) f 2 (XN+I) I

and L (P) is a bounded positive function, defined for P [0, 1 ] .

L (P) will be chosen later for optimal convergence of the algorithm.

We define the regression function M(q), for q [0, 1].

M(q) = E [L(q) G(X,q)]

= L(q). F(q)
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where

F(q) = [fl(X) - f(X)] [ fl(X) + (1-q) f 2 (X)].

En

.[Tfl(X) + (1-r) f 2 (X)] dx

The derivative of F (q) is:

F' (q) = - [fl - f 2 (X) ] 2 [qf 1 (X) + (1-q) f 2 (X)

En

[ fl(x ) + (1-n) f 2 (X) dx

Hence,

F (q) < 0 Vqe[0,1]

Also, we note that

F(r) = 0

M(Tr) = 0

Therefore, the function F (q) is monotone decreasing in [0,1 ] and

it has a unique zero for q= rr

Let

Z(X,q) = G(X,q) L(q) + M(q)

Obviously, the random variable Z(X,q) has zero mean, conditioned on q

E[Z(X,q) q] = 0

To guard against getting an estimate PN+1 that is outside of the

interval [a, b] , I put two reflecting barriers at a and b.

The recursive algorithm then becomes
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N+1 = PN + N1 [Z(XN+1 ' PN) - M(PN)]

PN+1 = R(PN+)

The function R(X) truncates to the extreme points of I(e) any

estimate that falls outside.

If I(e) = [a,b]

b if X b

R(X)= X if Xe[a,b]

a if X a

This is standard procedure in algorithms of this type.

For the convergence properties of the above sequential procedure, we now

invoke a theorem due to J. Sacks [ 8 ] . The conditions of the theorem are

expressed for convenience in the notation of the present paper.

They involve the regression function M(q) and the sequence of zero

mean, "noisy" observables {Z(XN, q) }

Condition la:

M = 0

and (q-r) M(q) < 0 for all qel(e), q rr

Condition 2a

For all q I( ) and some positive constant K 1 , M(q)

K 1  q - rl, and for every t 1 , t 2 such that 0 < t 1 < t 2 <

inf M M(q) > 0 , where the inf is taken for t 1  /q-rrl t 2

qeI(e)
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Condition 3a:

For all qeI(e)

M(q) = a 1 (q-rT) + 8(q, rr)

where (q, r) = 0(Jq-n ) as q-T - 0

and where a < 0.

Condition 4a:

a) sup E Z2 (X,q) q < <

qel(e)

b) lim E Z 2 (X, q) q ] S(r)

Condition 5a:

(The version of this condition is stronger than necessary, but it is

easier to verify for our particular case).

For a fixed value of q,the random variables { Z(X N, q) )N

are identically distributed.

Theorem :

(Sacks) Suppose that Conditions 1-5 are satisfied, and assume in

addition that al > . Then N ~ (PN -r ) is asymptotically

normally distributed with mean 0 and variance

S() [2 lall - -1

In order to satisfy the Conditions la - 6a , we constrain the function

L (q) to be positive and bounded:

0 < C 1 " L(q) < C 2 < +
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Then,

(q-Tr) M(q) = L(q) (q-rn) F(q) < 0

Vq rr , qeI(e)

because the product (q-w) F(q) is negative for all qr .

In Appendix III, it is shown that Assumptions 1-2 imply satisfaction of

Conditions la - 6a.

It is also shown that the constants a1 and S(rr) of the theorem are:

S(7) = L 2() J(Tr)

a, = - L(r) jN) = L() F (T)

because :

F (1) = - J(1r)

We are now able to express the asymptotic error variance of the

algorithm in terms of L(rr) , J(rr) and under the condition

2 al = L(r() J(nr) > 1

The variance is

NE (PN -)2 J(r) L2() 2L( ) J() - 1 ?-1

(If the condition 2 al > 1 is not satisfied, Sakrison [ ] has

commented that the convergence rate may be slower than N -).

For i fixed value of rr, we have in Fig. 1, the variance

V = J(rr) L 2 ( r) [ 2L(rr) J(rr) - 1 ]-1

as a function of L = L(rr)
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V

L

Fig. 1

-1

For L(rr) > [2J(rr)] , the variance V has a global minimum,

achievable at

L = J-1

Hence, we can optimize the nonlinear function L by choosing
-1

L.(rr) [ J(r) -, weI(e)

Substituting the optimum L ( ) into the variance expression, we find

that the resulting minimum asymptotic variance is:

E (PN - )2 N-[ J(r) -1

But this is exactly the Rao-Cramer lower bound, i.e., the sequential

procedure is asymptotically efficient.
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In other words, if we agree that the mixture approach should be followed,

the sequential algorithm presented will perform as well as anything else

in estimating rr.

The maximum likelihood estimation scheme requires tremendous complexity

in order to achieve the Rao-Cramer bound, while the presented sequential

scheme is very simple and achieves the same lower bound.

The only difficulty in the implementation, lies in the construction of the

nonlinear function L (rr).

However, it is a one-shot construction, so we can do it off-line. In

situations where we have to estimate prior probabilities repeatedly, while

the probability density functions remain unchanged, the scheme is

increasingly attractive.

In Appendix I, an efficient method for constructing J(r) (hence L(rr))

is presented for the case of multivariate Gaussian densities.

III. Mixture Approach: M> 2 Class Case

We now assume that each observation vector XK eEn comes from one

of M statistical populations-hypotheses.

Under hypothesis H m , XK is distributed according to the p.d.f.

fm ( X K )  Let rim be the prior probability of hypothesis Hm.

We need to estimate only M-1 of the prior probabilities (1rm).

T
Let T = 171 "'" M-1 be the vector of true prior probabilities,

and Q = 1 q... T-1T be a vector of arbitrary prior probabilities

Let g (X Q) designate the mixture density:

M-1 M-1

g(X Q) = q s fs(X) + - qs ] fM(X)

s=1 s=I
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The likelihood function of a sequence of N independent observations is:

N
Ttr g(X m Q)
m=l

We will investigate now the performance of the maximum likelihood estimate

of r , based on a sequence on N observations.

The M. L. estimate Q N is determined by the equation:

N
QN = arg max -r g(X Q)

QeIM  m=l m

where

IM Q; Q = (q 1  -1 )  s 0 , s=1,...,M-

M-l

s=1

We will make two mild assumptions about the densities f m(X), similar

to the ones for the M=2 case.

Assumption I:

fK (X), K=1,... ,M are continuous and nonzero for all XeEn.

Assumption 2

The densities f K (X), K = 1,... , M make an identifiable mixture

g(X IQ).

For assessing the properties of the maximum likelihood estimate, we

will use the multidimensional version of the theorem used in Section II.

The parameter space now is M- 1 dimensional.
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The Conditions 1 - 5 'of the following theorem are due to Cramer, [6 ]

and Conditions 6'- 7'are due to Perlman [7]. The last two Conditions

guarantee that for N "large enough, " the likelihood equation will have

a unique solution in IM (region of interest).

Condition 1

For all X e En, the derivatives

i+ j log g(X I Q) , s,m = 1,...,M-1

sq i qj
S m

exist for all QeIM and i,j = 1,2, 3

Condition 2

E log g(X Q) = 0
qsI q=TT

for s=l,..., M-1

where t = true value of the prior probability.

Condition 3

J (n) E g(X Q) K g(X Q) < co
sKINQ =17

for s,K = 1,..., M-1

Condition 4

2

E log g(X I Q) = - JsK ( )

5q s  q K
Q= T

for s,K = ... M-1



22

Condition 5

There exists a function m ( X) such that

i+j

log g(X I Q) < m(X) YQelM
bq 8q

s K

for i,j = 1,2,3 , s,K 1, M-=

and m(X) is finite, except on a set of probability zero.

Condition 6

The Kullback-Leibler information number

I(Q,w) = g(X I ) log g(X Q) dx
E

n

achieves a unique minimum at Q-=rr

Condition 7:

log g(X Q) is continuous at each
qs

QeIM, s = 1,..., M-1, uniformly in X.

Theorem :

Under the regularity Conditions 1 - 7 , the maximum likelihood

estimate

A N
QN = arg max T g(Xm Q)

Q m=l

is weakly consistent, i.e.

A
lim QN = rr in probability

N + N
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A
Furthermore, the Maximum Likelihood estimate Q N is asymptotically

efficient, achieving the Rao-Cramer lower bound.

Also, with probability 1, there exists an No , such that for all N > No

the likelihood equation has a unique solution rr = (rr 1) , in

in the region

S r ; 0 < < 1, i=,..., M-1, < 1

k=l

Let
,A , A ,T

RN(r) =E (QN - ) N TT)

be the error covariance matrix.

Let A = (al ... aM-1 T be any weighting vector with nonzero

norm.

Then the above property stated in the theorem can be expressed as:

-12
lim N[ AT RN1 (rr)A = [AT log g(X ) 12

Hence,the maximum likelihood estimator Q N performs better than any

estimate.

In Appendix IV, an upper bound to the function J sK (rr) is found.

The bound is

-1 - [(K M) s M) 3/2
JsK ( rr )  < M (K Ts )  (TK + M) (7s + TV 3

M-1

where TM = 1 - rK

K=1
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This bound is finite for

1s' "rK' M 1M 0

With arguments similar to those for the M=2 case, it can be easily

shown that Assumptions 1' - 2 imply the satisfaction of Conditions 1 - 7

The conclusion is that the maximum likelihood estimate of T '"works"

for the mixture model.

The implementation of the maximum likelihood estimate of r is numeri-

cally difficult. With increasing number of observations, N, the computa-

tional complexity of the M.L. estimator increases tremendously.

Motivated by the difficulty in implementation, we will now propose and

analyze a recursive estimation procedure.

The intuitive ibasis is the minization of the functional I(Q, r).

-1
I(Qw) = E {log [g(X J) (g(X I Q) ) Tr

The gradient of I with respect to Q, is:

v ,(Q,) = E log [g (X I ) (g(X I Q)) ] 1 }

- E [ log g(X I Q)

Therefore, an estimate of the gradient of I(Q, rr), based on one observa-

tion, X, is the vector

v log g(X Q) = g(X Q) [f(X) - fM(X)...

fM= (X) - fM(X) ]
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This observation motivates the following gradient algorithm for recursive

estimation of rr.

QN+1 = QN - (N+1)-1 L(QN) vlog g(XN+ 1 IQN )

Here, L (Q) is a scalar function of Q , positive and bounded between

[Cl, C 2 ].

0 < C 1 s L(Q) ! C 2 < +

L (Q) will be adjusted later for optimal convergence of the algorithm.

In order to examine the convergence properties of the algorithm, we need

to define the regression function M(Q).

M (Q) is an M- 1 dimensional vector function.

M(Q) = E {L(Q) 7log g(X I Q) Q}

After substitution, we have

M(Q) = [M(Q),...,MM (Q)]T

where

MK(Q) = - L(Q) g(X n) [g(X IQ)-1
En

SfK(X) - fM(X) dx

K=1,...,M-1

We note that

MK( rr) = 0
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hence

M(rr) = 0

We define the random vector

Z(X, Q) = L(Q) v log g(X Q) - M(Q)

we have:

E (Z(X,Q) IQ )= 0

We will define a region IM(A) in M-1 dimensional Enclidian space.

Let A=(a ... a ) , where ai are positive numbers, much smaller

than 1. We define the region IM(A) as follows:

IM(A) = Q; Q= (ql ' qM -1 ) '  K a '

M-1

K=1,..., M-1, aM 1 - qK

K=l

We are now ready to apply a multidimensional stochastic approximation

theorem due to J. Sacks [ ]. The conditions of the theorem are

expressed in terms of the function M(Q) and the random variables

Z(X, Q).

Condition 1:

M(rr) = 0, and for every e > 0 , inf (Q-rr) M(Q) > 0,

where the inf is taken over the region:

IM( A) f {Q; e > Q - > e}-1I M ( A ) 2 {Q ; e > Q " I > e .
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Condition 2:

There exists a positive constant K 1, such that, for all QeIM (A)

JIM ( Q ) K1 U Q -

Condition 3:

For all QelM(A),

M(Q) = B(Q - r) + 8(Q ,Ir)

where B is a positive definite (M - 1) x (M - 1) matrix, and

8(Q,rr) = 0 ( IQ - Tr ) as Q - r- 0

Condition 4:

sup E Z{ Z(X,Q) 12 Q} < +

QeIM(A)

lim E {Z(X,Q) Z T (X, Q) Q = S(Tr)
Q- n

where S ('r) is a nonnegative definite matrix

Condition 5:

Conditioned on Q, the sequence of random variables

Z (X N' ) N , is identicaly distributed.

Let b I , b M-1 be the eigenvalues of B in decreasing order.

1Write B = PB 1 P-1 where P = orthogonal matrix and

B1 = diag (b 1 . .. bM- 1)

Let Sij(rr) = ijth element of S(Tr)11
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* th
and Sij ( ) = i, j element of

S* (rr) = p-I S() P

Theorem :

Suppose Conditions 1-5 are satisfied.

Assume, further, that bM - >I

Then, N (QN - rr) is asymptotically normal, with mean 0 and

covariance matrix P F P where F is the matrix whose (i, j)th

element is

(b i + b. 1)1 S (r)S. ij
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In Appendix V, it is shown that Assumptions 1-2 imply satisfaction of

Conditions 1-5 for the region QeIM(A).

Hence the proposed recursive estimation algorithm will converge to the

true value rr , and the convergence of the error covariance is of the

order N- 1

The reason for achieving high speed of convergence is that the stochastic

approximation theorem of Sacks was invoked.

It requires more stringent conditions for convergence than Blum's [ 9]

theorem, for example, and the reward is that a unique zero of the

regression function is guaranteed, hence we have speedy convergence.

In order to keep the sequence of estimates (QN) within the region

IM (A), for convergence purposes, we make a slight modification.

1
The new computed estimate Q N+1 is

QN+1 N - (N+1)1 L(QN) log g(XN+ 1  QN )

We construct Q N+1 from Q N+ 1 by truncating to the boundaries the

coordinates of QN+1 that are outside of IM(A), so that

QN+1 e IM(A).

In Appendix V, the error covariance matrix is computed. The result is

as follows :

Let D(rr) be an (M-1) x (M-1) matrix with elements



30

Ks() = g(X )K(X) f(X)

E n

[f s (X) - fM(X) ] dx

Let d 1  d 2 . .. dM - 1 be the eigenvalues of D(rr).

Let

-1D(wr) = P diag(d...dM 
1 ) P

where P = orthogonal matrix, consisting of the eigenvectors of D(TT).

Then, using the above theorem, it is found in Appendix V that the

asymptotic error covariance matrix is :

lim NE (QN - ") (QN - ) T = P.FP-

where

F(r) = L 2 (rr) diag d1 (2L(r) dl-1 ) ,-1.

-1

, dM -1(2L(n) dM1 )
The motivation for employing the recursive estimate was to achieve a

simpler estimate than the Maximum Likelihood one. It is expected that

the convenience of having a recursive estimate will be paid in the form

of increased error variance.

The question is, how much performance did we sacrifice ?

Furthermore, it seems at a first glance, that it might be possible to

recover some of the incurred loss by cleverly choosing the function L (T).
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In the case M= 2, the loss was completely recovered, and the

Rao-Cramer bound was achieved with the use of the optimal function L(rT).

We will compare the performance of the following three estimators of T:

A) Maximum Likelihood -Estimator

B) Recursive Estimator

C) Relative Frequency Estimator

Actually, Estimator C can be implemented only when the data are observed

noiselessly.

This requirement is equivalent to the densities fi( X) having disjoint

support sets.

Therefore, comparison of Estimator C to the others is only an indication

of the loss in performance due to noisy data.

Let

Rs (r) = lim NE (QN- r) (QN - )T

be the asymptotic error covariance of the estimator s

The supercript s will indicate whether we have the A, B, or C estimator.

Let A =(a a . aM- 1) be an arbitrary weighting vector with nonzero

norm.

The magnitude of the quantity

[AT [RsT) -'A ]-1

is indicative of the "magnitude" of the error covariance matrix. The

error covariance matrix of the recursive estimator satisfies the equation:

RB () = P-1 FI P

The Maximum Likelihood estimator achieves the Rao-Cramer lower bound,

hence :
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AT[R A 1 E [A og g(X -1

We have:

E [AT log g(X r) ]

= ATE [ log g(X 1) log g (X nr) TA

= ATD(rr) A

= AT p-1 diag(d 1 ... dM_-)PA

= AT pT diag (dl ... dM_L)P A

(because P- = pT)

The matrix D(rr) is symmetric.

Hence,

D(rr) = DT() (pT diag (dl... dM-1 ) P )T

D(rr) = P diag (d l...dM-)PT

Using the above observations, we have:

[AT [RA(r) ]- 1 A ]1 = [AT pT diag (d 1 ... dM_1)P A.

FAT [RB(rr) -1 A = AT pT F- 1 PA -
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where

F- 1 = L() ]2 diag [(2L() d 1 -1 ) d ,

,..., 2L() 1 d-

We note now that each of the terms of F -1 is smaller than the

corresponding dK.

Because,. the inequality

-1 -2
2L (T) dK - 1 ) dK L(T) K

is equivalent to :

(L(1) dK - 1 )2 0

Hence, the conclusion is the following inequality:

[T [RB. I A ]1 [AT [RAr i1 A (a)

This inequality is true for any weighting vector A.

It expresses the exact loss in performance, asymptotically speaking, when

we use the recursive estimator instead of the Maximum Likelihood one.

In Fig. 2, the magnitude, yK , of the Kth diagonal term of F-1 is

plotted as a function of L.

dK 1 L 2 ( 2 LdK - 1)
KK
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y

-1
dK

( 2 dK) d K L

Fig. 2

-1
YK(L) has a unique global maximum for L = d

The choice of the function L should be such as to make each y K as

close to its maximum value as possible.

Because then the Rao-Cramer lower bound will be approached as closely

as possible.

Obviously, we cannot maximize all y K simultaneously.

Hence, we choose to maximize their average:

M-1-1-
T(L) = (M-1) 1 YK (L)

K=I

We have:

T(L) = d - 1 L 2 (2Ld - 1)
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where
M-1-1 1 -1

d - = (M-1) dK
K=1

We have:

d d M-1

The function T(L) has the same form with y (L) if we put d = d.
K K

Hence, the choice of L that maximizes T(L) is

M-1
-1

L(rr) = d = (M-1) d 1
K

K=1

-1 -1
Since dK is an eigenvalue of D (TT) , we have:

-1 trce [(,) 1
Lo(rr) = (M-l)-1 trace [D(1)]

It is much easier to compute Lo(rr) for each eIM(A) by this

formula.

If noiseless observations were available, the relative frequency estimate

of the prior probabilities would have asymptotic error covariance matrix

R (rr), with elements

C.. = r. (.ij - d
1 J 13 1

where
S1 for i= j

fij=0 for i j
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M-1

and = 1 - TT
M J

j=1

The inverse matrix, R (Tr) - has elements

-1 -1
hij rM ( + M ij)

Hence,

M-1 M-l

AT [RC () A = hij ai  =

i=1 j=l

M-1 2 -1
= ai . +

i=l

-1 M-1 M-1

+ M a. a. =

i=l1 j=l1

M-l M-1 2
2 -1 -1+ ( ai )

= ai rri  + M a.

i=1 i=l

We also have:

AT [RA (rr A = fg(x

En

M-1 2

S[ ai (i(X) - fM(X))] dx=

i=l
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M-1 M-1
=i a aK JiK(")

i=1 j=1

For

A = (0,...,0,aK,0,...,0) , a K  0

we have

TR AA - 21 A Ka K(

and and T[R C  -i -1
A R ) ] A = aK ( K + M

Using the result of Appendix IV, we have

J ( K±M)3  K -1 (K-1 + M-1JKK ( rT) c ( K+M) ( M3 (lTKT 1 (r K  + r M  )

hence, for such A's we have

[AT [RA -1 A ]-1 AT [RC ( 1 A ]-1

I have not been able to prove the above inequality for general A.

I conjecture that it is true in general, because the left side expresses the

Rao-Cramer bound on estimating the mixture priors under noisy observations,

while the right side expresses the variance of the relative frequency

estimate under noiseless (or perfectly classified) observations.

In any case, for a given weight vector A, we can compute both quadratic

forms. Their relative sizes will give us a measure of performance loss

due to noisy (unclassified) observations in estimating the prior probabilities.

Conclusions

We consider the problem of estimating the mixing prior probabilities when
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the probability density functions of a mixture are known.

It was shown that the maximum likelihood estimator is asymptotically

efficient, but difficult to implement.

Hence a recursive estimator was proposed and analyzed. Using 2

stochastic approximation theorems due to Sacks, it was possible to show

convergence to the true value.

Also, the asymptotic error variance was computed in a closed form.

Because of the closed expression, it was possible to see the performance

loss due to the use of a recursive algorithm.

For the binary mixture, it was possible to modify the recursive algorithm

by means of a memoryless nonlinear transformation, and achieve asymptotical

efficiency. For the M ary mixture with M > 2 , use of a memoryless

nonlinear transformation in the recursive algorithm decreased the error

covariance, without achieving asymptotic efficiency.
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Appendix I

The purpose of the present appendix is to show that

J(rr)< [Tr(1-)]-1 for Tr / 0,1

and that the function [J( 7)]- 1 is concave

for arbitrary densities f 1 (X), f 2 (X) that are nonzero for all

X eEn. Also a method will be given for computing J(r) in the

Gaussian case.

Let

s = (1-) " 1

Assume

T f 0,1

J( r) can be written:

2-1

J(rr) = (1+s) 1-f 2 (X)(fl(X))

En

-1 -1

-1

En

* s+f 2 (X) (flX)>11l f1 (X)dX

Hence

(1+s) - 2 . J(r) = -1 + (l+s)s - 1  f 1 (X)

En

s.E, f2(X)f (cX1-1-ldX
s~s+f 2 (X) (fl(X))'] dX
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The function s[ s+f 2 (X)(f 1 (X) )1 1 is positive and upper bounded

by 1. Hence, we can upper bound J(rr)

J(rr) : (1+s) 2 • s - 1

or:

It is seen that only for rr = 0 or 1 there is a possibility for J(rr)

to be infinite.

A general method will now be given for computing J(rr) in the case

of f 1' f 2 being multivariate Gaussian densities. The approach is

an extension of a method in [2 ] and [4 ].

Let

fl(X) = N(X,O,R 1 )

f 2 (X) = N(X,M O ,R 2 )

where M = M2- M difference of mean vectors.

Let A be the nxn orthogonal matrix satisfying the relations:

AR AT I

AR AT = A
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where A = diag (xl...Xn)

and xi are the eigenvalues of R 2 with respect to R 1

Hence, they satisfy the equation:

R 2  R 1 xR 0

Let M = AMO0  = (ml ... mn)T

If we make the change of variables

Y = AX = (Yn) T

the transformed densities are:

fl ( Y ) =  N(Y,O,I)

f 2 (Y) = N(Y, M, A)

It is sufficient to compute the quantity:

f fl (Y) . s+f 2 ()(f (Y))] dY =

E n

= E[ +f 2 (Y)(Y) )- ' 1 I H 1

Let

z = log [f 2 (Y)(f 1 (Y)- 1 ]

Then
n

z = y2 - 1 (y -m ) log X
k k k k k

k= 1

The above conditional expectation can be written:

E { Es+ez 1 H 1
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Under hypothesis H 1 Yk are Gaussian, zero mean, unit variance

independent random variables.

We are now in a position to construct the characteristic function of

z under the hypothesis H 1 '

Let

C(jw)= E exp(jwz) I H1

Let
-I

ak = 1-Xk

bk = mk(1-Xk) - 1

hk = (akbk) 2 (1-ak) 1+ log k=,...

Then,
n

C(jw) = II Fk(jw)
k=l

where

Fk(jw) = (1- 2 akjw) exp -2(akbk ) (1-2akjw)-1

-jwhk ]

The probability density function g(z) of the random variable z

under hypothesis ,H 1 can be computed from C (j w) by an inverse

Fourier transform.

Let

q = 3. 14159
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+-

g(z) = (2q)- C(jw)exp (-jwz)dw

We can finally compute the desired quantity

+C0
E [s+e -l 1 H1 = g(z) [s+ez - dz

We will now show that the function [J() ]-1 is concave.

This fact was noticed by Boes [ 1].

The second derivative of [J() ]- 1 is:

d2 [J( ) 1- (-2 ffl 2 --1 = -2 - f2 )  g dx
2 2

dr

j (f f2)4 -3

(f - 2 ) g dx +

+ 2[f(f l - f2 3  - 2 dx 2

/ {(fl - f 2
2 g-1 dx 3

where

g = fl1 + (1-r)f 2
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Using Schwarz's inequality, we have:

S[(f - f 2 ) g-1 ]3 g dx }

f={ Pf1 -f)g 1 J- V ( f gf' g x }

I(fl -f 2 ) 2  g-2gdx (fl f 2 ) 4 g-4gdx

= (f - f 2 ) 2 g-1 dx f(fl - f 2 ) 4 g-3 dx

Hence, the numerator of the expression for the second derivative is

negative.

Therefore,

d2 - 1 < 0 for all rre[0,1] and hence [J(T)]

drr 2

is concave.

In Fig. 3, we show the shape of [J(rr)] - 1  in relation to T(1-rr),

which is a lower bound.

0 0.5 1

Fig. 3 [J(v')] 1 > (1 - )TT
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Appendix II

We need to check whether conditions 1-7 are satisfied by the class

of density functions f 1 (X), f 2 (X) that satisfy Assumptions 1-2.

The derivatives appearing in Condition 1 are:

ak log g(X I q) = (-1) k - 1 (k-1)! [fl(X) - f 2 (X) ]
)qk

-k
qf 1 (X) + (1-q)f 2(X) ]

for k=1,2, 3

Using this formula, it is straightforward to check that

E -- log g(X I q) = 0
3q q= r

- E log g(X q) = E-. log g(X q)) 2

q 
q=TT

= J(r')

where

J() = [fl(X) - f 2 (X) ]2 [fl(X) + (1-rr)f 2 (X) ] dX

En

Hence Conditions 1-4 are satisfied.

For Condition 5,

a3 fl(X ) _ f2(X )  3q log g(X q) = 2 f 2
aa3 qf (X) + (1-q)f 2 (X)
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2 f 1(X) f 2 (X) [A (X)] - 3

where A(X) = min (fl(X) , f 2 (X))

Since A(X) > 0 VXeEn, and fl(X) , f 2 (X) are bounded,

Condition 5 is satisfied.

For Condition 6, it is known that the Kullback-Leibler information

number I(q, r) has the following properties :

I(q,rr) = 0 iff g(X I r) = g(X j q)

VXeEn

and I(q,rr) > 0 otherwise.

Because of the identifiability Assumption 2, we can have

g(X I 1) = g(X I q) VXeEn only for rr= q

Hence, Assumption 2 implies that I(q, rr ) achieves a unique minimum

at q = rr, and Condition 6 is satisfied.

The function

B(q, X) = -- log g(X q) =
aq

= fi(X) - f 2 (X)] [q fl(X) +

+ (1-q) f 2 (X) 1

is continuous in q for all qe[O , 1 ]. Furthermore, B(q, X) is

bounded, therefore, it is uniformly continuous in q, and Condition 7'

is satisfied.



47

Appendix III

Condition la has already been shown to be valid.

For Condition 2a, we have:

M(q) C 2  F(q)

I

F(q) and F (q) will be shown to be bounded.

Let
-1

e = f (m' rf iY) 1

We can write:

F(q) = fl(X) [ + (1-) ez [ q + (l-q) e z  dX-

En

S f 2(X) [ e - z + (Z (1-) q e z + (l-q) ]dX

En

The second integral has the same form with the first one. If we

interchange f and f 2 , rr and 1-rr, q and 1-q in the second

integral, we get the first one. Hence, it suffices to check the

boundedness of the first integral only.

-1

fl(X) [ + (1-) eZ ] [q + (1-q) eZ dX =

En

= E T(z,r,q) H 1
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where

T(z,T,q) = [ + (1-n) e ] [q + (1-q)eZ

The derivative of T with respect to z is:

T = (q-T) [q + (1-q) e z  -2

bz

Hence T is a monotone function of z.

We have the following bounds :

min I- T(z,T, q) a max '

Hence F(q) is bounded for q O, 1

The values F(1),F(O) are:

f(1) = (1-n) 1-J(1)

F() = rr[- + J(0)

By the definition of the interval I( e), we see that F (q) is bounded

for all q in the interval I(e).

In a similar manner, it can be shown that F (q) is bounded for

q#O, 1.

Hence,

IM(q)l C 2 I F(q) q-I j C 2 C3  jq-

for q0O, 1

where C 3 < + -
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The first part of Condition 2a has been satisfied.

The second part is satisfied also, if we observe that F (q) is a

strictly monotone function of q.

Because of the boundedness of F (q) , Condition 3a also easily

satisfied, with

al = M () = L(w) F (w)

Also we note that

F () = -J(w)

For Condition 4a, we must compute

E [z 2 (X,q) q = E [G(X,q) L(q) + M(q) 2

= L2(q) E [G 2 (X,q) q ]- M 2 (q) =

= L2(q) [- F (q) I - M2(q)

For q 0, 1 the above quantity is finite, hence Condition 4a is

satisfied. Also, we need to compute the quantity:

S(T) = lim E [z 2 (X, q) I q ] = L2( r) J(rr)

Z--0TT
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Appendix IV

In this appendix, we will seek upper bounds to the integrals J sk (),

s, k=l,..., M-1.

Jsk = f ( 5x) - fM(X) ) (fkX) - fM(X) )
En

M-1 M-1

Sm fm(X) + (1 - m)
m= 1 m= 1

-1

fM(X) ]1 dX

We will first consider the case s=k.

Let M- 1

TrM = 1 - j

j=1

J kk - ( - M) [k k (X) + rM fM(X) +

En

M-1 -1

+ TTm fm(X) ] dX

m= 1
mfk

n (k f 2 k k(X) + M fM(X) 1d

En
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Hence,

Jikk() Trk+ k M ) (fk(X) - fM(X))
E n

p(K, M) fk(X) + (1-p(K,M) fM(X) dX

where

p(K, M) = k [k +  1MI

In Appendix I, an upper bound to this last integral has been found under

the condition:

p(k, M) 0, 1

Using this result, we have:

Jk k ( T)  (rk + 1 p(k,M) (1-p(k,M))]-1

or :

Jkk ( 17)  (Tk + rrM ) 3 (rk r M)

under the condition:

"k rrM 0

Using the Schwarz inequality, we can upper bound Js k ()

[Jsk(')] = { f [g(X nI )] [fs(X) - fM(X)]

E n

S2
[g(X )] [fk(X) - fM(x) dX I
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f [g(x T) -1 [f(X) - fM(X)] dX

En

f [g(x I )] [fk(X - fM(X) dX

E n

Hence

Jsk(rr) Jkk(r) Jss ( T )

IJsk( )  [(k + T (M) + r s  / 2M)]3 / 2

S(rk  ) M s) M

This bound is valid for

s' "k' M V 0

As a conclusion, we see that if rr lies in the interior of the set IM ,

the functions Jsk ( r) are finite.

Hence, the part of condition 3' related to the finiteness of the above

functions, is satisfied.
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Appendix V

In the present Appendix, we will check the satisfaction of Conditions

1-5, based on the Assumptions 1-2. For Condition 1, we construct

the scalar function

A(.) = (Q -r)TM + x (Q - rr)

defined for e [0, 1i

We have
T

A(O) = (Q -TT) M() = 0

T
A(1) = (Q -T) M(Q)

The derivative of A(X ) is:

M-1

A'(x) = (qs - s) - M + x(Q - )
s= 1x s

But :

Ms [ T + )(Q -r)]

M-1
S-L(Q) g(X Tn) [X [fk(X) -fM(X)] (qk- Tk)

En k=1

M-1

+ [fk(X) - fM(X)] k + fM(X)]
k= 1

[fs(X) - fM(X)] dX

Hence :

SMs[r + X(Q - )] = L(Q)



54

* g(X n) [g(X r + x(Q - Tr))2

E n

fk(X) - fM(X) (qk  -T k

k= 1

[fs(X) - fM(X) dX

Substituting, we have the following expression for A (x):

-2
A'(x) L(Q) j g(X ITT) [g(X irr + x(Q - Tr))]2

E n

I (qk - k) [fk ( X ) - fM(X) dX

k= 1

or, more compactly:

A'() = L(Q) f g(X T )[g(X + I(Q - Tr))]

En

[g(X I rr) - g(X I Q)]2dX

We have, therefore:

A () 0 Vxe[0, 1]

The case A (x)= 0 will occur iff g(X I Q)-g(X I rr ) VX eE n

But, due to the identifiability assumption of fi (X) , this would

imply Q=r .
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Hence, for Q rT

we have A (x) > 0 Vxe[O, 1] .

Therefore,

A(1) = (Q - rr)T M(Q) > 0 VQ rr

and Condition 1 is satisfied. For Condition 2, we apply the mean

value theorem to the scalar function of X, Mk[rr + x(Q -rr)]

between the points X = 0 and x = 1.

M-i

Mk(Q) = Mk(rr) + Z (qs - s)

s=l ;qs

.Mk[r + Xk(Q - T

where ke[0,1] .

Substituting, we have:

M-1
Mk(rr) = L(Q) I (qs - rTs) Cks

s=1

where

-2

C ks = k S g(XInr)[g(X I Qk)] [fs(X) - fM(X)].
En

[fk(X) - fM(X)] dX

with

Qk T + Xk(Q -r) (P 1 P2 PM-1 ) T

Also, let

PM =  1 - P
j= 1
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Therefore,

[Mk(Q)1 2 = L2(Q) (q k - k ) Ck
k= 1

2 -M-1 2- 2
L2(Q) Cks Q -

Ss=

and

2  M-1 2

IM(Q) 112= Mk )
k= 1

M-1M-1 2 2
L2(Q) Ck s Q - T

k= 1 s=1

We can bound the quantities C ks with a method similar to the one

used in Appendix IV.

The result is

Cks k [max (Pk , P 1 ) + max (Ps 1  
1 ) ]

Therefore, for QeIM(A),

2 2
and with K 1 = C2 C ks < +

k,s

we have satisfied Condition 2. For Condition 3,we use the second order

mean value theorem for the scalar function of x,

Mk[ T + x(Q - Trr) , between the points [0,1]
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M-1

Mk (Q) (qs - rs) a Mk(r) +

s= 1 qs

M-1 M-1

+ (qs - s Tj iJr.

s=l j=1

q Mk[T + k(Q ")]aqs kqj

where X k[O,1] .

Hence, we can write:

M(Q) = B(Q - rr) + (Q - rr)T W(Q -rr)

where B = L(rr) D and D is a (M-l) x (M-l) matrix with

elements D.i ,

Dij= (X )g(X I i(X) - fM(X)1

E n

[fj(X) - fM(X)] dX

The matrix W is (M-1) x (M-1) and has element (s,j) the

number :

2 M-1

S. Mk[r + Xk(Q- )]

s j k= 1

It can be shown, again, that for Q e IM(A) , the above terms are

bounded, with methods similar to those of Appendix I.
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Hence

is upper bounded by a finite number.

T
Furthermore, let Y = (y 1 " " M- ) be an arbitrary vector,

YIIY 1 0.
Then

YTBY = L() I [g(X n)]-1

En

M-1 2

Syk (fk(X) - fM(X)) dX
S =1

M-1 M-1

Y TBY can be zero iff k fk ( X) - fM(X) k =  0
k=l k= I

VXE nE

The identifiability of the set (fi ( X ) ) makes this impossible.

Therefore, B is positive definite. The above facts show that

Condition 3 is satisfied.

We must compute

E [ jZ(X, Q) 1 2 Q

= L 2 (Q) f g(X rn) [g(X Q)] -2

En
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M- k(X) - fM(X) dX - M(Q)

k=l

The first integral can be upper bounded in the same manner as Ckk'

We have:

I g(X i) [g(X Q)- 2  fk(X) - fM(X)2 dX

E n

g max(qkl q M)

where

Q = ...l ' qM-l)

and
M-1

=1- .qM I q

j=1

For

q ,..., q , q > 0 ,
1 M-1 M

each term is bounded.

Hence, for QeIM(A) , the expected value of the norm of Z(X, Q)

is bounded. The matrix S(rr) has elements

S~,r() = L 2() j [g(X I ) [1 (Xi M(X)

En

[fj(X) - fM(X)] dX

or :

S(rr) = L 2 (r) D(17)
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It has been shown already that D(rr) is positive definite.

Hence Condition 4 is satisfied. Because of the nature of the algorithm,

Condition 5 is easily shown to be satisfied.

For our case, we have:

B(rr) = L(rr) D(Tr)

S(rr) = L2(rr) D(rr)

The matrix S*(rr) is:

S*(r) = P-1  S(rr) P = P 1 L 2 (rr) D(rr) P =

= L(rr) p-1 B(n) P

= L(rr) diag(b 1 ... bM- 1 )

Let dl d 2 
> . . > dM - be the eigenvalues of D(Tr).

Then,

bk = L(1) dk

and

S*(T) = L 2 (r) diag(d 1 . . . dM-l)

The matrix F is, therefore, diagonal:

F(T) = L 2 (r) diag[(2(1-) dl - 1) 1 dl ' ...

(2L(r) d - 1) d Ml



61

References

[1] D. C. Boes, "On the Estimation of Mixing Distributions," Ann.

Math. Statistics, 1966, p. 17 7 .

[2] K. Fukunaga and T. Krile, "Calculation of Bayes' Recognition

Error for Two Multivariate Gaussian Distributions, " IEEE

Trans. on Comp., March, 1969.

[3] T. Y. Young and G. Coraluppi, "Stochastic Estimation of a

Mixture of Normal Density Functions Using Information

Criterion," IEEE Trans. on IT, May, 1970.

[4 ] D. Kazakos, "Optimal Design of an Unsupervised Adaptive

Classifier with Unknown Priors, " ICSA, Rice University

Technical Report, May, 1974. (Will appear as an article.)

[5] S. J. Yakowitz, '"Unsupervised Learning and the Identifiability

of Finite Mixtures, " IEEE Trans. on IT, 1970, (3).

[6] H. Cramer, "Mathematical Methods of Statistics, " Princeton

University Press, 1946.

[7] M. D. Perlman, "The Limiting Behavior of Multiple Roots of

the Likelihood Equation, " Department of Statistics, University

of Minnesota, Tech. Report 125, July, 1969.

[8] J. Sacks, "Asymptotic Distribution of Stochastic Approximation

Procedures," Ann. Math, Statistics, 1958, (2).

[9] J. R. Blum, "Multidimensional Stochastic Approximation Method, "

Ann. Math. Statistics, 1954, p. 737.

[10] D. Sakrison, "Stochastic Approximation: A Recursive Method

for Solving Regression Problems, " Advances in Communication

Systems, Vol. 2, A. V. Balakrishnan, ed. New York,

Academic Press, 1966, pp. 51.


